.. documentation for refineryframe package master file, created by sphinx-quickstart on Sun Aug 13 21:07:03 2023. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Welcome to documentation for refineryframe package! =================================================================== .. role:: raw-html-m2r(raw) :format: html .. image:: https://github.com/Kiril-Mordan/refineryframe/workflows/Tests/badge.svg :target: https://github.com/Kiril-Mordan/refineryframe/actions/ :alt: Build status .. image:: https://static.pepy.tech/badge/refineryframe :target: https://pepy.tech/project/refineryframe :alt: Downloads .. image:: https://img.shields.io/pypi/v/refineryframe :target: https://pypi.org/project/refineryframe/ :alt: PyPiVersion .. image:: https://img.shields.io/github/license/Kiril-Mordan/refineryframe :target: https://github.com/Kiril-Mordan/refineryframe/blob/main/LICENSE :alt: License .. image:: https://img.shields.io/pypi/pyversions/refineryframe :target: :alt: PyVersions .. image:: https://codecov.io/gh/Kiril-Mordan/refineryframe/branch/main/graph/badge.svg :target: https://app.codecov.io/gh/Kiril-Mordan/refineryframe?branch=main :alt: Codecov refineryframe ============= .. image:: _static/logo.png The goal of the package is to simplify life for data scientists, that have to deal with imperfect raw data. The package suppose to detect and clean unexpected values, while doubling as safeguard in production code based on predifined conditions that arise from business assumptions or any other source. The package is well suited to be an initial preprocessing step in ml pipelines situated between data gathering and training/scoring steps. Developed by Kyrylo Mordan (c) 2023 Installation ------------ Install ``refineryframe`` via pip with .. code-block:: bash pip install refineryframe .. toctree:: :maxdepth: 2 :caption: Contents: modules other Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`